Block additive functions on the Gaussian integers

نویسندگان

  • Michael Drmota
  • Pierre Liardet
  • MICHAEL DRMOTA
  • PETER J. GRABNER
چکیده

We present three conceptually different methods to prove distribution results for block additive functions with respect to radix expansions of the Gaussian integers. Based on generating function approaches we obtain a central limit theorem and asymptotic expansions for the moments. Furthermore, these generating functions as well as ergodic skew products are used to prove uniform distribution in residue classes and modulo 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ASYMPTOTIC NORMALITY OF b-ADDITIVE FUNCTIONS ON POLYNOMIAL SEQUENCES IN CANONICAL NUMBER SYSTEMS

We consider b-additive functions f where b is the base of a canonical number system in an algebraic number field. In particular, we show that the asymptotic distribution of f(p(z)) with p a polynomial running through the integers of the algebraic number field is the normal law. This is a generalization of results of Bassily and Katai (for the integer case) and of Gittenberger and Thuswaldner (f...

متن کامل

ASYMPTOTIC NORMALITY OF b-ADDITIVE FUNCTIONS ON POLYNOMIAL SEQUENCES IN THE GAUSSIAN NUMBER FIELD

0. Notations Throughout the paper we use the following notations: We write e(z) = e; C, R, Q, Z, N and N0, denote the set of complex numbers, real numbers, rational numbers, integers, positive integers, and positive integers including zero, respectively. Q(i) denotes the field of Gaussian numbers, and Z[i] the ring of Gaussian integers. We write tr(z) and N(z) for the trace and the norm of z ov...

متن کامل

ASYMPTOTIC NORMALITY OF b-ADDITIVE FUNCTIONS ON POLYNOMIAL SEQUENCES IN THE GAUSSIAN NUMBER FIELD1

We consider the asymptotic behavior of b-additive functions f with respect to a base b of a canonical number system in the Gaussian number eld. In particular, we get a normal limit law for f(P (z)) where P (z) is a polynomial with integer coeecients. Our methods are exponential sums over the Gaussian number eld as well as certain results from the theory of uniform distribution. Throughout the p...

متن کامل

Block-Matching Sub-Pixel Motion Estimation from Noisy, Under-Sampled Frames — An Empirical Performance Evaluation

The performance of block-matching sub-pixel motion estimation algorithms under the adverse conditions of image undersampling and additive noise is studied empirically. This study is motivated by the requirement for reliable subpixel accuracy motion estimates for motion compensated observation models used in multi-frame super-resolution image reconstruction. Idealized test functions which includ...

متن کامل

A Structure Theorem for Multiplicative Functions over the Gaussian Integers and Applications

We prove a structure theorem for multiplicative functions on the Gaussian integers, showing that every bounded multiplicative function on the Gaussian integers can be decomposed into a term which is approximately periodic and another which has a small U3-Gowers uniformity norm. We apply this to prove partition regularity results over the Gaussian integers for certain equations involving quadrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008